On the Exact Maximum Complexity of Minkowski Sums of Polytopes
نویسندگان
چکیده
We present a tight bound on the exact maximum complexity of Minkowski sums of polytopes in R. In particular, we prove that the maximum number of facets of the Minkowski sum of k polytopes with m1,m2, . . . ,mk facets respectively is bounded from above by
منابع مشابه
Maximal f-vectors of Minkowski sums of large numbers of polytopes
It is known that in the Minkowski sum of r polytopes in dimension d, with r < d, the number of vertices of the sum can potentially be as high as the product of the number of vertices in each summand [2]. However, the number of vertices for sums of more polytopes was unknown so far. In this paper, we study sums of polytopes in general orientations, and show a linear relation between the number o...
متن کاملDynamically Maintaining the Exact Minkowski Sums of Rotating Polytopes∗
We present a novel algorithm for maintaining exact Minkowski sums of pairs of polytopes in R, while one of the polytopes rotates. The algorithm is based on pre-computing a so-called criticality map, which records the changes in the underlying graph-structure of the Minkowski sum. We give tight combinatorial bounds on the complexity of the criticality map when one of the polytopes rotates, aroun...
متن کاملOn f-vectors of Minkowski additions of convex polytopes
The objective of this paper is to present two types of results on Minkowski sums of convex polytopes. The first is about a special class of polytopes we call perfectly centered and the combinatorial properties of the Minkowski sum with their own dual. In particular, we have a characterization of face lattice of the sum in terms of the face lattice of a given perfectly centered polytope. Exact f...
متن کاملRelative Stanley–reisner Theory and Lower Bound Theorems for Minkowski Sums
This note complements an earlier paper of the author by providing a lower bound theorem for Minkowski sums of polytopes. In [AS16], we showed an analogue of McMullen’s Upper Bound theorem for Minkowski sums of polytopes, estimating the maximal complexity of such a sum of polytopes. A common question in reaction to that research was the question for an analogue for the Barnette’s Lower Bound The...
متن کاملf-Vectors of Minkowski Additions of Convex Polytopes
The objective of this paper is to present two types of results on Minkowski sums of convex polytopes. The first is about a special class of polytopes called perfectly centered and the combinatorial properties of the Minkowski sum with their own dual. In particular, we have a characterization of faces of the sum in terms of the face lattice of a given perfectly centered polytope. Exact face coun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 42 شماره
صفحات -
تاریخ انتشار 2009